First-principles study of crystal structural stability and electronic and magnetic properties in LaMn(7)O(12).
نویسندگان
چکیده
The crystal structure, electronic and magnetic properties of LaMn(7)O(12) ((LaMn(3)(3+))(A)Mn(4)(3+)O(12)) are investigated by GGA (LSDA) and GGA + U (LSDA + U) (0.0 ≤ U ≤ 5.0 eV) methods. Based on two experimentally refined structures (distinguished by the distortion parameter Δ, namely S(I) (Δ = 8.5 × 10(-5)) and S(II) (Δ = 25.0 × 10(-4))), GGA and GGA + U with U < 3.0 eV calculations indicate that S(I) with a small distortion is the lowest-energy crystal structure while GGA + U with 3.0 ≤ U ≤ 5.0 eV calculations show that S(II) with a larger distortion is the ground-state crystal structure. Within the LSDA method, S(II) is always the ground-state structure no matter if U is considered or not. There are two independent magnetic sublattices: Mn(3+) within the A site and Mn(3+) within the B site. First, it is predicted that A-site Mn(3+) ions are preferably AFM-coupled in G-type (antiferromagnetically coupled in three directions). Based on this result, four magnetic configurations (FM-[Formula: see text], AFM1-[Formula: see text], AFM2-[Formula: see text] and AFM3-[Formula: see text]) are designed, and their total energies are calculated. Our results demonstrate that AFM2 and AFM3 are the lowest magnetic state, respectively, for S(I) and S(II). Correspondingly, LaMn(7)O(12) is metallic with no orbital ordering at AFM2 for S(I) while it is an insulator with orbital ordering at AFM3 for S(II). Thus, modulation of the distortion parameter Δ, e.g. by chemical doping, could be employed as a new avenue to induce a magnetic phase transition and the corresponding metal-to-insulator transition in LaMn(7)O(12).
منابع مشابه
Size Evolution Study of the Electronic and Magnetic Properties of MgO Nanoclusters
Magnesium oxide nanoclusters have attracted much attention due to their potential applications to catalysis and novel optoelectronic materials. In the present study, we have studied the electronic and magnetic properties of the stoichiometric magnesium oxide nanoclusters (MgO)n for n = 2-20. Although the binding energy increases with the size of the cluster, it re...
متن کاملFirst Principle Study of MC (M= Al, Ga, and In) at Equilibrium and under Negative Stress
The electronic and magnetic properties of the hypothetical compounds of MC (M=Al, Ga and In) are investigated by using first-principle calculations and pseudopotential plane wave self-consistent field method based on density functional theory. In order to find the most stable phase of MC (M=Al, Ga and In), we study them in zinc-blende (ZB), rocksalt (RS), wurtzite and NiAs crystal structures. W...
متن کاملTheoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کاملStructural, magnetic and electrical properties of pure and Dy-doped Fe2O3 nanostructures synthesized using chemical thermal decomposition technique
Pure (S1) and Dy3+-doped α-Fe2O3 (S2 and S3) nanoparticles were prepared by a combustion synthesis method at 700 ºC for 8 h using Fe(acac)3 (Tris(acetylacetonato)Iron(III)) as raw material. Characterizations of the prepared powders were carried out by powder X-ray diffraction (PXRD). Structural analysis was performed b...
متن کاملStructural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 22 24 شماره
صفحات -
تاریخ انتشار 2010